Stimulation-evoked changes in extracellular pH, calcium and potassium activity in the frog spinal cord.
نویسندگان
چکیده
Double-barrel ion-sensitive microelectrodes were used to measure activity-related changes in extracellular pH (pHe), potassium and calcium concentration ([K+]e and [Ca2+]e) in the spinal dorsal horns of frogs. Repetitive stimulation (30-100 Hz) of the dorsal root evoked transient acidification in the lower dorsal horn by 0.25 pH units, which was accompanied by an increase in [K+]e by 4-5 mmol/l and a decrease in [Ca2+]e by 0.5 mmol/l. The pHe changes were found to have a typical depth profile and increased with the stimulation frequency, intensity and duration. The maximum of pHe changes was reached in 25-30 s of stimulation, and when stimulation continued further no greater pHe changes were achieved. Similarly as the K+ and Ca2+ transients, the pHe reached a ceiling level, which was 0.2-0.25 pH units more acid than the pH of the Ringer solution. The poststimulation K+ undershoot below the resting K+ level (3 mmol/l) was accompanied by an alkaline shift before the original pH base line. The rise time of the pHe changes was slower than that of [K+]e and [Ca2+]e changes. However, the redistribution of all the ionic changes had a similar time course. The clearance of changes in [K+]e and pHe was slowed by ouabain. The depression of the acid shift required higher concentrations of ouabain than the depression of the alkaline shifts. Acetazolamide, a carbonic anhydrase inhibitor, depressed the acid and enhanced the alkaline shift. Superfusion of the cord with elevated [K+]e was accompanied by a prompt and progressive acid shift, the lowering of [K+]e by an alkaline shift. The stimulus-evoked K+ increase and acid shift were depressed during the elevated [K+]e, while the alkaline shift was enhanced. Spontaneous elevations of [K+]e were accompanied by acid shifts of a similar time course. The results are discussed in terms of stimulus-evoked changes in extracellular strong ion differences [SID]e, and of their possible physiological significance.
منابع مشابه
Extracellular diffusion parameters in spinal cord and filum terminale of the frog.
Extracellular space (ECS) diffusion parameters were studied in isolated frog spinal cord grey matter and filum terminale (FT), that is predominantly composed of glial cells and axons. We compared the cell swelling induced by K(+) application, hypotonic stress and tetanic stimulation of afferent input. The ECS diffusion parameters, volume fraction alpha (alpha = ECS volume/total tissue volume), ...
متن کاملK+ changes in the extracellular space of the spinal cord and their physiological role.
K+ accumulates in the intercellular space as a result of neuronal activity. The changes in extracellular K+ concentration, delta[K]e (estimated by K+-selective microelectrodes), depends on neuronal activity, on the density of discharging neurones and the removal of the accumulated K+ by diffusion, active transport and current flow through cells. In the mammalian as well as the amphibian spinal ...
متن کاملInfluence of changes in pH on the mechanical activity of cardiac muscle.
In a comprehensive experimental study, the influence of changes in extraand intracellular pH on the mechanical and electrical activity of frog heart ventricle preparations has been investigated. The twitch tension and potassium contracture tension were decreased in acid solutions, provided that the concentration of calcium or the frequency of stimulation was low. In solutions with a high calciu...
متن کاملChanges of intracellular sodium and potassium ion concentrations in frog spinal motoneurons induced by repetitive synaptic stimulation.
A post-tetanic membrane hyperpolarization following repetitive neuronal activity is a commonly observed phenomenon in the isolated frog spinal cord as well as in neurons of other nervous tissues. We have now used double-barrelled Na+- and K+-ion-sensitive microelectrodes to measure the intracellular Na+- and K+-concentrations and also the extracellular K+-concentration of lumbar spinal motoneur...
متن کاملA functional role for small-conductance calcium-activated potassium channels in sensory pathways including nociceptive processes.
We investigated the role of small-conductance calcium-activated potassium (SK) and intermediate-conductance calcium-activated potassium channels in modulating sensory transmission from peripheral afferents into the rat spinal cord. Subunit-specific antibodies reveal high levels of SK3 immunoreactivity in laminas I, II, and III of the spinal cord. Among dorsal root ganglion neurons, both periphe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiologia Bohemoslovaca
دوره 37 3 شماره
صفحات -
تاریخ انتشار 1988